

# Surface and Microanalysis for Trace Explosive Particle Detection



Collaboration between NIST and the TSA Trace Explosives Group with input from the Contraband Detection Technology Group at Sandia National Laboratory.

Goal: Use advanced surface analysis tools at NIST to study the performance characteristics of trace explosive detection portals. Improve sensitivity, collection efficiency and operational reliability.



### **Trace Explosive Detection Portal**



#### **Projects:**

- •Identification and counting of high explosive particles by cluster SIMS.
- •Particle collection/release efficiency using fluorescent polystyrene spheres.
- •Temperature programmed desorption of particles.
- •Characterization of surface coatings on collector surfaces.
- Explosive particle standards
- TPD GC-IMS/GC-MS









## **Surface and Microanalysis for Trace Explosive Particle Detection**



Collaboration between NIST and the TSA Trace Explosives Group with input from major trace detection instrument companies.

Goal: Use advanced surface analysis tools at NIST to study the performance characteristics of trace explosive detection instruments.



**Tabletop Trace Explosive Detection Unit** 



#### **Projects:**

- Particle collection efficiency on swipes using fluorescent polystyrene spheres.
- •Thermal desorption behavior of individual particles.
- Thermal imaging microscopy
- Explosive particle standards









Micro-Raman Spectra, Excited at 785 nm

